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Axisymmetric liquid-metal pipe flow passes through a quadrupole magnetic field that
is generated by a pair of ‘oppositely sensed’ d.c. current coils. As a result of this
arrangement, the flow experiences a degree of braking, mostly in the vicinity of
the magnetic neutral point, owing to the effect of Lorentz forces acting upon the
liquid-metal. Usefully, the system represents a practical and novel electromagnetic
(e.m.) valve capable of regulating the flow of molten metal emanating from a tun-
dish, for example. Linear theory predicts the development of a counter-intuitive
unidirectional ‘slug-like’ profile throughout the liquid-metal pipe flow at large values
of the Hartmann number, M , in the presence of an idealized axisymmetric neutral
point that extends to infinity. We confirm that this behaviour is also apparent, but
over a narrow region spanning the neutral point, in the case of a more realistic
liquid-metal pipe flow acted upon by a pair of oppositely sensed d.c. current coils.
The axial pressure gradient along the wall of this flow manifests a sharp peak at large
M centred on the neutral point that is generated by the steep gradients in the slug
profile there. In fact, the pressure drop developed across this region is approximately
equal to the net braking effect of the e.m. valve.

1. Introduction
A novel and practical d.c. electromagnetic (e.m.) valve can be formed from a pair

of oppositely sensed d.c. current coils that are concentric to a given pipe or jet
liquid-metal flow. The axisymmetric quadrupole magnetic field, or neutral point field,
of the arrangement provides an effective means of non-invasively controlling the
downspout flow of a liquid-metal from a tun-dish into a receptacle of solidifying melt,
for example.

In this paper, we examine the nature of the e.m. braking effected by this d.c. field
and, particularly, the dependence of the pressure drop at fixed mass flow rate (and
vice versa) at large field strengths upon suitably defined Hartmann (M � 100) and
Reynolds (Re � 50) numbers. A schematic of the idealized situation is presented in
figure 1. Initially, a liquid-metal flow impinges upon a well-defined region of magnetic
field and experiences some retardation there. Subsequently, downstream of the field
region the flow recovers over a suitably long length of pipe to be a satisfactory
approximation to Poiseuille flow. Although more pronounced effects upon the flow
can be achieved with extended solenoids, as opposed to the two d.c. coils comprising
our simplified e.m. valve, we anticipate that the liquid-metal flow will exhibit the same
qualitative behaviour in both cases.
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Figure 1. Axisymmetric liquid-metal flow in the upper half of an insulating pipe impinging
upon a d.c. quadrupole magnetic field and, subsequently, recovering over a field-free region.
Note that ∇ × (J × B)|φ is the azimuthal component of the curl of the Lorentz force and h is

the grid spacing in the O(h4) finite-difference scheme.

In Kenny (1992), I considered the two-dimensional analogue to the proposed
pipe flow of the current paper, namely, liquid-metal duct flow impinging upon a
region of non-uniform magnetic field generated by four symmetrically arranged line
currents. The corresponding numerical model for which yielded jet-like profiles at
large Hartmann numbers, M , for the axial velocity component in the vicinity of the
neutral point. This localized behaviour was consistent with the analytical results of
linear theory that described unidirectional duct flow through an idealized neutral
point extending to infinity. In that paper, and as part of a general consideration of
magnetic fields that permit unidirectional flows to exist, it was seen that an idealized
axisymmetric neutral point extending to infinity led to the development of a counter-
intuitive ‘slug-like’ profile at large M throughout the flow. This was explained in
terms of the ‘curl’ of the Lorentz force approximately vanishing over the core of such
flows for asymptotically large M . We shall confirm that this aspect also applies to
the more realistic case of flow in the vicinity of the axisymmetric neutral point of
the arrangement shown in figure 1, by employing a highly accurate finite-difference
algorithm with spacing h to model the associated streamfunction-vorticity equation.

2. Equations
The non-dimensional equations of steady incompressible liquid-metal magneto-

hydrodynamic (MHD) flow can be written in the following manner:

1

Re
∇2Ω − (u · ∇)Ω + (Ω · ∇)u = −N∇ × (J × B), (2.1)

J = E + u × B, B = B0 + b, (2.2)

in which Ω = ∇ × u is the vorticity vector, B is the total magnetic field and, where the
electric field E and current density J obey the steady form of Maxwell’s equations
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namely,

∇ · J = 0, ∇ × E = 0, ∇ × b = Rm J . (2.3)

In the present context, the axial component of E vanishes along the wall of the
non-conducting pipe in figure 1 so that E = 0 everywhere by virtue of the assumption
of axisymmetry and (2.3). The parameters related to (2.1)–(2.3) are the interaction
parameter N , Hartmann number M , magnetic Reynolds number Rm, and Reynolds
number Re, which are given by

N = σB2
Na/(U0ρ), M2 = σB2

Na2/µ, Rm = aU0σµ0, Re = M2/N. (2.4)

Furthermore, in (2.4) and with reference to figure 1, a is the radius of the pipe, U0 is a
typical value of the axial component of flow and, BN is the first-order approximation
of the imposed field (non-dimensionalized to B0) in the vicinity of the neutral point.
The liquid-metal is specified to have the following physical properties, namely, a
permeability of µ0, conductivity σ , density ρ and ‘eddy viscosity’ µ to account for
any turbulence that might be present in the flow.

The type of metals considered in this study satisfy Rm � 1 (Shercliff 1965) which,
in this limit, is approximately the ratio of the induced field b to a characteristic value
of the imposed field B0 (cf. (2.2)). Consequently, to first order in Rm, we ignore the
nonlinear interaction between the velocity and induced magnetic field and set B ≈ B0.

Equation (2.1) is linearized to yield unidirectional solutions when both the terms
(u · ∇)Ω and (Ω · ∇)u vanish and the magnetic field is of a certain functional form
(Kenny 1992). Examples of such solutions include the well-known Hartmann flow in
the presence of a uniform transverse field in plane geometry and, less familiarly, the
neutral point flow in both plane (Regirer 1960) and cylindrical geometries (Pai 1954).

The axisymmetry of figure 1 permits the introduction of a suitable streamfunction

defined by u = (v, 0, u) = ∇×(ψ(r, z)φ̂/r) so that we obtain a simplified scalar equation
for the azimuthal component of the vorticity, ω(r, z), namely

1

Re
∇2ω − (u · ∇)ω − ω

r2Re
+

v(r, z)ω

r
= −N

{
r

(
B0 · ∇

r

)2

ψ −
(

B0 · ∇ψ

r2

)
(B0 · r̂)

}
,

(2.5)

where Ω =(0, ω(r, z), 0) and ω = −(1/r)(∇2ψ − 2ψr/r). The numerical method
employed to solve the coupled equations for ψ and ω is analogous to the approach
used in Kenny (1992) and implements the ‘compact explicit h4 finite-difference
approximations to operators of the Navier–Stokes type’ summarized in Dennis &
Hudson (1985).

3. Boundary conditions
In figure 1, we will assume Poiseuille conditions at both the entrance and exit of

the ‘field-free’ regions of the pipe to enable a more convenient identification of the
hydromagnetic component of the pressure drop over the length of the pipe to be
made. Ultimately, it is this much larger component, with respect to any background
hydrodynamic component, we wish to quantify in terms of known parameters that
characterize the flow.

If required, somewhat higher values of Re can be accessed without recourse to
prohibitively long pipes by relaxing the specification of Poiseuille conditions at the
pipe exit and, instead, applying the weaker constraints ωzz = 0 and ψzz = 0 at the



72 R. G. Kenny

outlet. The specification of ψ and ω on the boundary of the domain is complete when
we impose both unit volume flux, i.e. 2π ψ = 1, and no-slip conditions at the wall
(r = 1) in addition to symmetry requirements along the axis of the pipe, cf. figure 1.

The axial extent of the field region is determined from where the Lorentz forcing
term, ∇ × (J × B0), in (2.5) is equal to the O(h4) error estimate in the corresponding
numerical algorithm. Consequently, a smooth transition to the downstream ‘field free’
region is anticipated over which hydrodynamic recovery to a good approximation of
Poiseuille flow is possible. An estimation of this recovery length can be made using
vorticity diffusion arguments as discussed in Kenny (1992).

4. Quadrupole magnetic field
It is convenient to employ a scalar streamfunction χ with which to express a vacuum

field B′
0 generated by an axisymmetric distribution of current, so that B′

0 = ∇×(χ φ̂/r).
As a result, the streamfunction χ of a current coil centred at the origin of coordinates
and suitable for rapid numerical evaluation is given by

χ(r, z) =
µ0I

2π

√
z2 + (r + γ )2

[
−E(m) +

z2 + r2 + γ 2

z2 + (r + γ )2
K(m)

]
, (4.1)

where r = 1 corresponds to the pipe wall, γ is the ratio of the coil to pipe radius a, I

is the coil current, m =4rγ /(z2 + (r + γ )2) and, K(m) and E(m) are complete elliptic
integrals of the first and second kind, respectively (Abramovich & Stegun 1965, p. 591).

The quadrupole field in figure 1 can now be derived from (4.1) using coils located at
z = ±z0. Generally, we set z0 = 1 and γ = 3/2, but extend z0 in cases where increased
flow resolution in the inter-coil region is required. Near to the neutral point at the
origin of coordinates, the scaling BN in (2.4) is given by BN = 3µ0Iz0γ

2/2(z2
0 + γ 2)5/2.

5. Results
5.1. Comparison of numerical and analytical profiles

The analytical result for unidirectional flow in a neutral point field extending to
infinity was originally derived by Pai (1954), and which for our purposes can be
expressed as

u(r) = (M/π) [cosh (M/2) − 1]−1

∫ M1/2

M1/2r

sinh(ξ 2/2)/ξ dξ. (5.1)

The numerical solution of (2.5) at the neutral point z =0 is unidirectional to a
high degree of accuracy and compares well with the relatively flat form of (5.1) for
M = 10 and Re = 1 (figure 2). The extent of the profile flattening can be estimated
in the asymptotic limit of large M when the condition of unit flux implies that
limM → ∞ u(r) ∼ 1/π ∼ 0.32, ignoring the contribution from the Hartmann boundary
layer at the wall (r =1).

5.2. Evolution of pipe flow

Figure 3 records various profiles for the case of M = 10 (z0 = 3, Re = 1), where it is
recalled that the current coils are located at ±z0. For clarity, only the most significant
features of flow evolution are depicted which occur over a relatively narrow range of
pipe spanning the inter-coil region. Significantly, a slug profile is clearly apparent at
the neutral point (z = 0) of the pipe flow.

In figure 4, the axial variation of the vorticity along the pipe suggests that discernible
Hartmann boundary layers at the wall are only apparent for a narrow range centred
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Figure 2. Comparison of numerical and analytical axial velocity profiles u(r) at the neutral
point z = 0, for M = 10 and Re = 1. The Poiseuille velocity profile for unit volume flux in a
pipe is included for reference.
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Figure 3. Evolution of u profiles along the pipe for M = 10, Re = 1 and z0 = 3. For reference,
at the wall (r = 1) u = 0, z = 0 denotes the neutral point, z = ±33 corresponds to the edges of
the magnetic region, and z = 35 is the location of the pipe exit.
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Figure 4. Evolution of ω profiles along the pipe for M = 100, Re = 1 and z0 = 1.

on the neutral point. In the next section, scaling arguments for asymptotically large
M suggest that this axial length scale along the wall is O(M−1/2). Although the same
scale of variation exists in comparable duct flow, by contrast, no central jet structure
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Figure 5. Scaled streamfunction contours, i.e. 2π ψ , for M = 100, Re = 1 and z0 = 1.
Amplified stagnant flow regions exist beneath the current coils located at z = ±z0.

N = M2/Re Interaction parameter, or Stuart number cf. (2.4)

	P =

∫ z2

z1

∇2u/Re dz Total pressure drop

	Pe = 	P −
∫ z2

z1

∇2uPois/Re dz ‘Excess’ pressure drop, cf. (5.2)

δ = O(M−1) Hartmann (radial) boundary layer width at r ∼ 1
	z = O(M−1/2) Width of axial pressure gradient about z = 0 for r ∼ 1

Table 1. Summary of terms and limiting length scales for M → ∞ that appear in § 5.

emerges for the axisymmetric flow in this region, despite analogous tapering of the
magnetic field lines. This is explained by the differing effects that the dominant core
approximation of (2.1) at large M , i.e. M2∇ × (J × B0) ∼ 0, yields in axisymmetric
and duct geometries (Regirer 1960; Kenny 1992).

Pronounced regions of stagnant flow are present beneath the current coils, as is
evidenced by the streamfunction contour plot in figure 5 for M =100 and Re =1.
These possibly represent an undesirable feature of the e.m. valve owing to the
likelihood of a buildup in particulate or gaseous impurities that can impair metal
quality.

5.3. Fixed volume flux results

In order to focus upon the contribution to the total pressure drop from the effect of
the Lorentz forces acting upon the liquid-metal we define

	Pe = 	P − (1/Re)

∫ z2

z1

∇2uPois dz, (5.2)

for a pipe of length z2 − z1, so that 	Pe is the ‘excess’ pressure drop over and above
that derived from the Poiseuille component of flow, see table 1. At large values of M ,
the excess pressure gradient at the wall ∂Pe/∂z|r =1 exhibits a sharp peak centred on
the neutral point, as is suggested by figure 6. The corresponding pressure drop across
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Figure 6. A plot of ∂Pe/∂z at r = 1 − 2h, in which h ∼ 1/75 is the grid-spacing (for Q = 1,
M = 100 and Re =1), Pe against axial distance z spanning the inter-coil region. The current
coils are located at z = ±1.

this narrow locality accounts for almost all the magnetic braking along the pipe. On
this basis, the asymptotic behaviour of Re	Pe at large M can be estimated from the
gradients across the Hartmann (radial) boundary layer of width δ namely,

lim
M→∞

Re	Pe = lim
M→∞

∫ z2

z1

∇2(u − uPois)

∣∣∣∣
r=1

dz ∼ ũ	z/δ2 ∼ QM2	z, (5.3)

where δ = O(M−1), and Q = π ũ is the volume flux from a slug flow with uniform
core velocity ũ. The axial length scale 	z can be determined from the rapid vorticity
variation about the neutral point, a feature that is clear from figure 4. At large M

and r ∼ 1, the next highest order of magnitude terms in the streamfunction–vorticity
equation (2.5) satisfy

ωzz + ωr ∼ −2M2	z ψrz, (5.4)

which represents the balance between the viscous terms on the left-hand side and
the e.m. forcing term on the right-hand side. For convenience, we simply balance the
scaling of the terms on the left-hand side of (5.4) to yield

	z2 ∼ δ or 	z ∼ M−1/2. (5.5)

Consequently, we may rewrite (5.3) as

lim
M→∞

Re	Pe ∼ QM3/2, (5.6)

which appears to be confirmed by figure 7 which compares a plot of the (3/2) log M

asymptote with the quantity log(Re	Pe). For clarity, a representative value of Re is
specified to avoid blurring of the data.

As kindly suggested by one referee, it is instructive to compare (5.6) with an
estimate of the excess pressure drop when the magnetic field is entirely transverse to
the pipe flow (cf. Hua & Walker 1989). In this case, the core axial velocity profile
is approximately hemispherical (Roberts 1967b, page 184), and scaling arguments in
the limit of large M for this region yield

lim
MT →∞

Re	Pe ∼ QM2
T , (5.7)
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Figure 7. A plot of log(Re	Pe) versus log(M) for unit flux, Q = 1. For clarity, a specific value
of Re is chosen, Re = 23, to avoid data blurring. – – –, the logarithmic asymptote (3/2) log M
in (5.6).

where MT is a suitably defined Hartmann number for this flow. The relations (5.6)
and (5.7) suggest that somewhat less electrical power is consumed by implementing
a transverse field in place of a neutral-point configuration to enforce a specified
pressure drop 	Pe on a flow with a given Q/Re. Despite this advantage, however, the
transverse field flow is characterized by the development of two high-velocity narrow
sidewall jets (Roberts 1967a, b), which span regions where the field is approximately
tangential to the wall. Residual jet structures are likely to still exist at the exit of
a downspout to a tun-dish, for example, so that the depth to which any impurities
and instabilities penetrate the solidifying melt below is increased in this case to yield
impaired metal quality.

5.4. Fixed pressure drop results

Liquid-metal falling from a tun dish at a speed of ∼ 1 m s−1 tends to operate under
the constraint of a fixed head of metal in an industrial context. Fortunately, and
unlike other numerical schemes that divide the flow into core and boundary-layer
regions (e.g. Hua & Walker 1989; Molokov & Reed 2003), advantage can be taken
of a similarity relationship to generate data at a fixed pressure drop 	Pe using data
obtained at a fixed volume flux Q. This approach follows Kenny (1992) in which it
was noted that similar flows result when ψ is scaled by α, Re by 1/α and the pressure
drop by a factor α2 to yield

	Pe(M, Re, Q) = (1/α2)	Pe(M, Re/α, αQ). (5.8)

Employing (5.8), it is now possible to invert the data more conveniently obtained at
fixed Q to that at a set value of 	Pe.

A plot of Q against N is given in figure 8 for various narrow bands of Re that result
from the nature of the inversion process in (5.8). The effect of the magnetic braking
is particularly apparent at low to moderate values of N . At large N in figure 8, it
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Figure 8. A plot of Q against N at fixed 	Pe ( = −10.15 units) for various narrow bands of
Re values. Specifically, the bands of Re are ±5% of the following:
∗, Re = 5.345; �, Re = 10.67; 
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Figure 9. A plot of log Q against log N for Re = 5.35 and 	Pe = −10.15 units.
– – –, the logarithmic asymptote (−3/4) log N in (5.9).

appears that Q decreases asymptotically which suggests that the e.m. valve effectively
brakes the metal flow to a small seepage.

The asymptotic behaviour of Q in the limit of large N at constant pressure drop
can be derived from (5.6) to yield

lim
N→∞

Q ∼ N−3/4Re1/4	Pe, (5.9)

the logarithm of which appears to agree closely with the corresponding data plotted
in figure 9.
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6. Conclusion
In this paper, we have shown that accurate numerical simulations for an

axisymmetric liquid-metal pipe flow passing through a quadrupole field generated by
two d.c. current coils becomes unidirectional in the vicinity of the neutral point. The
associated flow profile is that of a ‘slug type’ and agrees well with the corresponding
linear theory of unidirectional flow in an infinitely extended axisymmetric neutral
point developed in Pai (1954) and Kenny (1992). Asymptotic arguments indicate that
the axial length scale along the wall over which the pipe flow becomes unidirectional
is O(M−1/2). The corresponding axial pressure gradient exhibits a peak over this
length scale that is interpreted as a sharp brake acting on the flow. Moreover, the
retardation developed in this region accounts for almost all the pressure drop across
the ends of the pipe and scales as O(M3/2) which is confirmed by the numerical data
generated at a fixed volume flux.

One major issue that remains to be addressed for a possible future study is the
role of turbulence in the neutral point field of figure 1. Generally, magnetic fields
dampen turbulent transverse flows but, possibly, enhance parallel velocity fluctuations
(Lee & Choi 2001). The presence of significant axial components of field parallel to
the principal direction of flow in figure 1 suggests that some component of turbulence
should be accounted for. The degree to which it should be included though will
depend critically upon the operational regime of M and Re.

The author is very grateful to both Professor Keith Moffatt (Department of Applied
Mathematics and Theoretical Physics, University of Cambridge) and Dr A. J. Mestel
(Department of Mathematics, Imperial College) for taking the time to both read and
offer advice on the manuscript.
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